Modal approach for tailoring the absorption in a photonic crystal membrane
نویسندگان
چکیده
In this paper, we propose a method for tailoring the absorption in a photonic crystal membrane. For that purpose, we first applied Time Domain Coupled Mode Theory to such a subwavelength membrane and demonstrated that 100% resonant absorption can be reached even for a symmetric membrane, if degenerate modes are involved. Design rules were then derived from this model in order to tune the absorption. Subsequently, Finite Difference Time Domain simulations were used as a proof of concept and carried out on a low absorbing material (extinction coefficient=10) with a high refractive index corresponding to the optical indices of amorphous silicon at around 720 nm. In doing so, 85% resonant absorption was obtained, which is significantly higher than the commonly reported 50% maximum value. Those results were finally analyzed and confronted to theory so as to extend our method to other materials, configurations and applications.
منابع مشابه
Tailoring the absorption in a photonic crystal membrane: A modal approach
In order to achieve high efficiency photovoltaic devices and sensors, we propose to implement photonic crystals on thin absorbing layers in such a way to generate two Bloch mode resonances with opposite symmetries. Through FDTD and RCWA simulations, we track and adjust the characteristics of these modes so as to reach their degeneracy. Design and simulations were carried out considering a hydro...
متن کاملA Systematic Approach to Photonic Crystal Based Metamaterial Design
Photonic crystal design procedure for negative refraction has so far been based on trial and error. In this paper, for the first time, a novel and systematic design procedure based on physical and mathematical properties of photonic crystals is proposed to design crystal equi-frequency contours (EFCs) to produce negative refraction. The EFC design is performed by the help of rectangular stair-c...
متن کاملDesign of the [SiO2/ZrO2] photonic crystal filter for application in 350-nm laser safety glasses
In this paper, a one-dimensional photonic crystal filter based on the [SiO2/ZrO2] bilayer have been designed for application in safety glasses for working in 350-nm wavelength. High power lasers with low wavelength e.g. 350-nm have very high power which can cause serious damage to the operator’s eyes. In this paper using the transfer matrix method and theoretical calculation in MATLAB software ...
متن کاملCalculations of air-guided modes in photonic crystal fibers using the multipole method.
We demonstrate that a combination of multipole and Bloch methods is well suited for calculating the modes of air core photonic crystal fibers. This includes determining the reflective properties of the cladding, which is a prerequisite for the modal calculations. We demonstrate that in the presence of absorption, the modal losses can be substantially smaller than in the corresponding bulk medium.
متن کاملDesign of Photonic Crystal Polarization Splitter on InP Substrate
In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013